
2-October-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Introduce course

● Introduce OpenGL & SDL

● Basics of drawing with OpenGL
• Basic drawing / view state
• Overview of common drawing operations

● OpenGL's buffers
• Color buffer
• Depth buffer
• Stencil buffer & buffers that we won't use this term (briefly)

2-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

2-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

2-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Graphics terminology and concepts

2-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Graphics terminology and concepts
● Polygon, pixel, texture, infinite light, point light, spot

light, etc.

2-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Graphics terminology and concepts
● Polygon, pixel, texture, infinite light, point light, spot

light, etc.

Some knowledge of linear algebra / vector
math.

2-October-2007 © Copyright Ian D. Romanick 2007

What should you already know?
C++ and object oriented programming

● For most assignments you will need to implement
classes that conform to a very specific interface.

Graphics terminology and concepts
● Polygon, pixel, texture, infinite light, point light, spot

light, etc.

Some knowledge of linear algebra / vector
math.
● Can probably pick most of it up on the way, but be

prepared to work a little harder.

2-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Create and use a window for OpenGL drawing.

2-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Create and use a window for OpenGL drawing.

● As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

2-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Create and use a window for OpenGL drawing.

● As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

Draw static and animated models.

2-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Create and use a window for OpenGL drawing.

● As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

Draw static and animated models.
● There are several methods available in OpenGL...

the advanced methods will wait until next term.

2-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Create and use a window for OpenGL drawing.

● As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

Draw static and animated models.
● There are several methods available in OpenGL...

the advanced methods will wait until next term.

Fixed-function lighting and texture combiners.

2-October-2007 © Copyright Ian D. Romanick 2007

What will you learn?
Create and use a window for OpenGL drawing.

● As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

Draw static and animated models.
● There are several methods available in OpenGL...

the advanced methods will wait until next term.

Fixed-function lighting and texture combiners.
● Most of OpenGL 1.x except shadow maps.

● Programmable shaders will wait until next term too.

2-October-2007 © Copyright Ian D. Romanick 2007

How will you be graded?
Bi-weekly quizzes worth 5 points each.

A final exam worth 50 points.

Bi-weekly programming assignments with 10
points each.

A term project worth 50 points.

2-October-2007 © Copyright Ian D. Romanick 2007

How will programs be graded?
First and foremost, does the program produce

the correct output?

Are appropriate algorithms and data-structures
used?

 Is the code readable and clear?

2-October-2007 © Copyright Ian D. Romanick 2007

10,000 Foot OpenGL Overview
Created by SGI due to industry demand for a

standard more open than Iris GL.
● Originally controlled by the OpenGL Architecture

Review Board (ARB).

● Now controlled by the Khronos Group.

Member companies create and vote on
additions to the specification.
● Version 1.0 ratified in 1992

● Version 2.1 ratified in August 2006.

● Version 3.0 is coming later this year.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Design Principles
OpenGL is a low-level, device independent

graphics interface.

From The Design of the OpenGL Graphics
Interface, by Mark Segal and Kurt Akeley:

“An essential goal of OpenGL is to provide device independence
while still allowing complete access to hardware functionality. The
API therefore provides access to graphics operations at the lowest
possible level that still provides device independence.”

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Design Principles (cont.)
Based on a client-server model.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Design Principles (cont.)
Based on a client-server model.

● Shows its X-Windows origins. Client (application
program) and server (rendering program) were
running on different computers.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Design Principles (cont.)
Based on a client-server model.

● Shows its X-Windows origins. Client (application
program) and server (rendering program) were
running on different computers.

● Still works! Client (application program) and server
(firmware on the gfx card) are different computers.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Design Principles (cont.)
Based on a client-server model.

● Shows its X-Windows origins. Client (application
program) and server (rendering program) were
running on different computers.

● Still works! Client (application program) and server
(firmware on the gfx card) are different computers.

The GL is a state machine with a data push
model.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Design Principles (cont.)
Based on a client-server model.

● Shows its X-Windows origins. Client (application
program) and server (rendering program) were
running on different computers.

● Still works! Client (application program) and server
(firmware on the gfx card) are different computers.

The GL is a state machine with a data push
model.
● Data typically only flows into the GL.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Design Principles (cont.)
Based on a client-server model.

● Shows its X-Windows origins. Client (application
program) and server (rendering program) were
running on different computers.

● Still works! Client (application program) and server
(firmware on the gfx card) are different computers.

The GL is a state machine with a data push
model.
● Data typically only flows into the GL.

● Commands change state that affect rendering.

2-October-2007 © Copyright Ian D. Romanick 2007

References
http://citeseer.ist.psu.edu/segal94design.html

● Paper is a bit dated, but it's still an interesting read.

http://www.opengl.org/news/permalink/the_opengl_arb_officially_announced_opengl_3/

http://citeseer.ist.psu.edu/segal94design.html
http://www.opengl.org/news/permalink/the_opengl_arb_officially_announced_opengl_3/

2-October-2007 © Copyright Ian D. Romanick 2007

Break

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Conventions
OpenGL has a very specific set of naming

conventions.
● Each function, type, or enumerant must adhere to a

set of rules defined in the spec.

● Some of these conventions make up for the fact
that C does not have function overloading.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Types
Each data type name begins with GL.

Each data type has a defined function suffix.
● More on this later.

Each data type has a defined bit-size.
● The bit-size is the same on all platforms.

 Integral types may be signed or unsigned.
● Unsigned types get a u after the GL.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Type Examples
GL Type Name Common C Type Bit-size Notes

char 8-bits
short 16-bits
int 32-bits
unsigned char 8-bits
unsigned short 16-bits
unsigned int 32-bits
float 32-bits Single precision float
double 64-bits Double precision float
unsigned char 8-bits

GLbyte
GLshort
GLint May be long
GLubyte
GLushort
GLuint May be unsigned long
GLfloat
GLdouble
GLboolean

Table 2.1 on page 44 in the book lists the remaining types.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Enumerants
Each enumerant name begins with GL_.

Names of enumerants are always upper-case.

When passed as parameters to functions,
enumerants have the type GLenum.

Examples:
● GL_TRIANGLES, GL_PROJECTION, etc.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Functions
Each function name begins with gl.

Each function name that has multiple forms will
end with a description of its parameter types.

Each function name separates words by
alternating upper and lower case.

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Function Examples
Single signature functions:

● glBegin, glEnd, glClearColor,
glShadeModel, etc.

Multiple signature functions:
● glVertex3f, glVertex3fv, glVertex4f, etc.

● 3 and 4 specify the data count. f specifies the data
type (GLfloat). v specifies a pointer (vector).

2-October-2007 © Copyright Ian D. Romanick 2007

OpenGL Function Examples
Single signature functions:

● glBegin, glEnd, glClearColor,
glShadeModel, etc.

Multiple signature functions:
● glVertex3f, glVertex3fv, glVertex4f, etc.

● 3 and 4 specify the data count. f specifies the data
type (GLfloat). v specifies a pointer (vector).

● glVertex3f(GLfloat x, GLfloat y,
GLfloat z);

● glVertex3fv(const GLfloat *v);

2-October-2007 © Copyright Ian D. Romanick 2007

What is SDL?
From the front page of libsdl.org:

“Simple DirectMedia Layer is a cross-platform
multimedia library designed to provide low level
access to audio, keyboard, mouse, joystick, 3D
hardware via OpenGL, and 2D video framebuffer.”

What does this mean for us?

2-October-2007 © Copyright Ian D. Romanick 2007

What is SDL?
From the front page of libsdl.org:

“Simple DirectMedia Layer is a cross-platform
multimedia library designed to provide low level
access to audio, keyboard, mouse, joystick, 3D
hardware via OpenGL, and 2D video framebuffer.”

What does this mean for us?
● Lots of web sites have OpenGL example code that

uses SDL.

● Since I use Linux, code that I write will be useful to
you. :)

2-October-2007 © Copyright Ian D. Romanick 2007

What is SDL? (cont.)
SDL gives us a platform independent way to

interact with platform-dependent issues.
● OpenGL makes the 3D part platform-independent,

but that's it.

● At the very least we need to open a window and
process some keyboard input.

2-October-2007 © Copyright Ian D. Romanick 2007

Basic SDL Usage
Every SDL program must initialize the library:
if (SDL_Init(SDL_INIT_VIDEO) != 0) {
 exit(1);
}
atexit(SDL_Quit);

This is more a C way. In C++ we could use a
singleton instead.

●After the contructor, call an init method that
does SDL_Init.

●The destructor calls SDL_Quit.

2-October-2007 © Copyright Ian D. Romanick 2007

Opening a window with SDL
After initializing the library, we have to tell it

what kind of window we want.
● Window size, color depth, etc.

● SDL_GL_SetAttribute does this.
/* Request at least 8-bits of red. */
SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 8);

/* Request at least 8-bits of alpha. */
SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);

/* Request at least 4-bits of stencil buffer. */
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 4);

2-October-2007 © Copyright Ian D. Romanick 2007

Opening a window with SDL (cont.)
After describing the window we want, we have

to open the window.
● Specify a few more window attributes.

● SDL_GL_SetVideoMode does this.
/* Open a double-buffered 640x480 window. Use
 * the default color depth (set previously).
 */
SDL_GL_SetVideoMode(640, 480, 0,
 (SDL_DOUBLEBUF|SDL_OPENGL));

2-October-2007 © Copyright Ian D. Romanick 2007

Getting input with SDL
SDL provides input as a series of events.

● SDL_WaitEvent blocks until an event is received.

● SDL_PollEvent always returns immediately.

Each event has a type.
● A key press event has type SDL_KEYDOWN.

● If no real event is available, the event type returned
by SDL_PollEvent is SDL_NOEVENT.

Events may have a data payload depending on
the type.

2-October-2007 © Copyright Ian D. Romanick 2007

Getting input with SDL
SDL_PollEvent(&e);
switch (e.type) {
case SDL_KEYDOWN: {
 switch (e.key.keysym.sym) {
 case 'q':
 exit(0);
 }
 break;
}

2-October-2007 © Copyright Ian D. Romanick 2007

SDL + OpenGL “Hello, world!”

2-October-2007 © Copyright Ian D. Romanick 2007

Two kinds of operations in OpenGL
State management

2-October-2007 © Copyright Ian D. Romanick 2007

Two kinds of operations in OpenGL
State management

● Enabling lights

● Configuring textures

● Setting alpha blending modes

● etc.

2-October-2007 © Copyright Ian D. Romanick 2007

Two kinds of operations in OpenGL
State management

● Enabling lights

● Configuring textures

● Setting alpha blending modes

● etc.

Drawing

2-October-2007 © Copyright Ian D. Romanick 2007

Two kinds of operations in OpenGL
State management

● Enabling lights

● Configuring textures

● Setting alpha blending modes

● etc.

Drawing

2-October-2007 © Copyright Ian D. Romanick 2007

Two kinds of operations in OpenGL
State management

● Enabling lights

● Configuring textures

● Setting alpha blending modes

● etc.

Drawing
● Clearing the screen

● Drawing 2D images (fonts, HUDs, etc.)

● Drawing 3D polygons

2-October-2007 © Copyright Ian D. Romanick 2007

Required State
Before drawing anything, some state must be

set
● Set the viewport

● Set the viewing volume

● Set the camera

These must also be reset each time the window
is resized
● The SDL drawing surface also has to be recreated

on a window resize

2-October-2007 © Copyright Ian D. Romanick 2007

Resize Routine
void handle_resize(int w, int h)
{
 my_surf = SDL_SetVideoMode(w, h, 0, (SDL_RESIZABLE | SDL_OPENGL));

 // Set the viewport and the view volume.
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (width <= height) {
 const float aspect = float(h) / float(w);
 glOrtho(-range, range, -range * aspect,
 range * aspect, -range, range);
 } else {
 const float aspect = float(w) / float(h);
 glOrtho(-range * aspect, range * aspect,
 -range, range, -range, range);
 }

 // Identity puts camera at (0, 0, 0) looking down -Z axis.
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

2-October-2007 © Copyright Ian D. Romanick 2007

Vertex Data
Vertex data specified inside a begin / end pair.

glBegin(GL_LINES);
glVertex3f(1.0, 1.0, 0.0);
glVertex3f(2.0, 3.0, 0.0);
glEnd();

Multiple data elements per vertex:
● Color, normal, texture coordinate, etc.

State changes are not allowed between begin /
end.

There are other forms of drawing, and they are
all described in terms of begin / end.

2-October-2007 © Copyright Ian D. Romanick 2007

Vertex Data (cont.)
The glVertex call “provokes” the vertex.

● Conceptually, this is when all the data for the vertex
gets sent to the hardware.

2-October-2007 © Copyright Ian D. Romanick 2007

Vertex Data (cont.)
The glVertex call “provokes” the vertex.

● Conceptually, this is when all the data for the vertex
gets sent to the hardware.

What color will each point be?
glColor3fv(red);
glBegin(GL_POINTS);
glVertex3fv(point[0]);
glColor3fv(blue);
glVertex3fv(point[1]);
glVertex3fv(point[2]);
glColor3fv(green);
glVertex3fv(point[3]);
glColor3fv(purple);
glEnd();

2-October-2007 © Copyright Ian D. Romanick 2007

Primitive Types
The type of the primitive to be drawn is

specified as a parameter to glBegin.
● Point, line, triangle, quadrilateral, and arbitrary

polygon primitives are available

● Primitives can be grouped in strips (triangles &
quads) or fans (triangles)

GL_TRIANGLES and GL_TRIANGLE_STRIP
are by far the most common.

2-October-2007 © Copyright Ian D. Romanick 2007

What the heck is a strip or a fan?

Image borrowed from “OpenGL Programming Guide”.

2-October-2007 © Copyright Ian D. Romanick 2007

Hidden Surface Removal
Two ways built into OpenGL for HSR.

● Z-buffering

● Back-face culling

Nearly every OpenGL program uses both.
● Z-buffering gives pixel-perfect results.

● Back-face culling eliminates polygons before they're
drawn.

2-October-2007 © Copyright Ian D. Romanick 2007

Culling State
Back-face culling is enabled with
glEnable(GL_CULL_FACE).

Front-facing orientation is selected with
glFrontFace.
● glFrontFace(GL_CW) makes clockwise ordered

faces front-facing.

● glFrontFace(GL_CCW) makes counter-clockwise
ordered faces front-facing.

2-October-2007 © Copyright Ian D. Romanick 2007

Polygon “winding”
Several methods exist to do back-face culling.

OpenGL uses the “clockwise vs. counter-
clockwise method.”
● When a polygon faces towards the viewer, it's

points are viewed in clockwise order.

● When a polygon faces away from the viewer, it's
points are viewed in a counter-clockwise order.
• Try this with a clock.

2-October-2007 © Copyright Ian D. Romanick 2007

Depth Buffer
Depth buffer (or z-buffer) compares the depth

value of each fragment of a polygon with the
depth value stored at each pixel.
● If the test passes, the fragment gets drawn.

● If the test fails, the fragment is discarded.

To use the depth buffer, SDL has to create the
buffer:

SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE,
15);

2-October-2007 © Copyright Ian D. Romanick 2007

Additional Depth State
Depth test has an enable:

glEnable(GL_DEPTH_TEST);

Also select the comparison mode.
● glDepthFunc(GLenum mode)
● GL_LESS, GL_LEQUAL, GL_GREATER,
GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL,
GL_NEVER, GL_ALWAYS

Also need to clear the depth buffer.
● Or GL_DEPTH_BUFFER_BIT with the existing
glClear mask.

2-October-2007 © Copyright Ian D. Romanick 2007

Stencil Buffer
Extra per-pixel buffer containing integer values.

● Values in the stencil buffer can control drawing.

Stencil buffer is often stored interleaved with
depth buffer
● 8-bit stencil with 24-bit depth is most common, but

1-bit stencil with 15-bit depth is sometimes available

To use the stencil buffer, SDL has to create it:

SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE,
1);

2-October-2007 © Copyright Ian D. Romanick 2007

What can you do with it?
Write values to it! Several operations available:

● GL_KEEP – leave the value alone

● GL_ZERO – clear value to zero

● GL_REPLACE – replace value with preset value

● GL_INCR – increment value, clamp to max value
• GL_INCR_WRAP increments but wraps to zero

● GL_DECR – decrement value, clamp to zero
• GL_DECR_WRAP decrements but wraps to max value

● GL_INVERT – bitwise inversion of value

2-October-2007 © Copyright Ian D. Romanick 2007

Writing values to the stencil buffer
A different operation can be set for pixels that

pass the Z test, fail the Z test, or fail the stencil
test (see next slide)
● glStencilOp sets all three operations

● Several extensions and OpenGL 2.1 add the ability
to perform a different set of operations for front
facing and back facing polygons
• We'll talk about this functionality later (probably next

term).

2-October-2007 © Copyright Ian D. Romanick 2007

Miscellaneous stencil functions
glClearStencil clears the stencil buffer to

some value

glStencilMask controls which bits can be
written by stencil operations

2-October-2007 © Copyright Ian D. Romanick 2007

Stencil testing
glStencilFunc sets the operation, reference

value, and a mask
● The usual depth test values are available:
GL_NEVER, GL_LESS, GL_LEQUAL, GL_GREATER,
GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and
GL_ALWAYS

Per-pixel, (ref & mask) op (stencil &
mask) is used before the depth test to
determine whether or not to write to the color
buffer

2-October-2007 © Copyright Ian D. Romanick 2007

Example
glClearStencil(0);
glEnable(GL_STENCIL_TEST);

/* Write 1 to stencil where polygon is drawn.
 */
glStencilFunc(GL_ALWAYS, 1, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
draw_some_polygon();

/* Draw scene only where stencil buffer is 1.
 */
glStencilFunc(GL_EQUAL, 1, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
draw_scene();

2-October-2007 © Copyright Ian D. Romanick 2007

Other Buffers
Some advanced OpenGL modes allow

calculation of multiple colors at a time.
● These extra values are written to auxiliary buffers.

● We probably won't cover these in this sequence.

Selection of the target buffer is made with
glDrawBuffer (or glDrawBuffers).
● In double buffer mode we can draw to GL_FRONT or
GL_BACK.

● In stereo mode these become GL_FRONT_LEFT,
GL_FRONT_RIGHT, GL_BACK_LEFT, and
GL_BACK_RIGHT.

2-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

